a2 United States Patent

US009154934B2

(10) Patent No.: US 9,154,934 B2

Yang et al. 45) Date of Patent: Oct. 6, 2015
(54) SYSTEM AND METHOD FOR (56) References Cited
PRE-ASSOCIATION DISCOVERY
U.S. PATENT DOCUMENTS
(71) Applicant: FutureWei Technologies, Inc., Plano, 6.535.867 BL* 32003 WAlerS oo U1
TX (US) 6,785,714 B1* 82004 Thompson etal. 709/213
8,141,149 B1* 3/2012 Henryetal. 726/22
(72) Inventors: Yunsong Yang, San Diego, CA (US); 383; 85(1)241‘ (1)3 ﬁ} : lflﬁggg Iiambeirt 45357/3/3255. }‘
. ptetal. ...
Younghoon Kvwon, San Diego, CA 2014/0198724 Al* 7/2014 Abrahametal. 370/328
(US); Zhigang Rong, San Diego, CA 2014/0211659 Al* 7/2014 Abraham etal. 370/254
(as) 2014/0293978 Al* 10/2014 Yangetal. 370/338
2014/0349578 Al* 112014 Huangetal. 455/41.2
(73) Assignee: Futurewei Technologies, Inc., Plano, 2014/0351476 Al : 112014 Huang etal. ... - 710/303
TX (US) 2014/0351478 Al* 112014 Leeetal. ..o 710/303
OTHER PUBLICATIONS
(*) Notice: SutbjetCt. to aItly (?;S(Cilalmeé’. thte Eermeftglg Wi-Fi Alliance, “Wi-Fi Peer-to-Peer (P2P) Technical Specification,”
%ase Ié lls SZXbeIi‘) © 1 Oar da Justed under version 1.2, Wi-Fi Alliance Technical Committee, P2P Task Group,
S.C. 154(b) by ays. Dec. 14, 2011, 161 pages.
. Wi-Fi Alliance, “Wi-Fi Direct Services Draft Technical Specifica-
(21) Appl. No.: 14/105,895 tion,” version 0.1, Wi-Fi Alliance Technical Committee, Wi-Fi Direct
(22) Filed Dec. 13. 2013 Services Task Group, Apr. 2, 2013, pp. 1-86.
iled: ec. 13,
* cited by examiner
(65) Prior Publication Data Y
Primary Examiner — Christopher Crutchfield
US 2014/0293978 Al Oct. 2, 2014 (74) Attorney, Agent, or Firm — Slater & Matsil, L.L..P.
(57) ABSTRACT
Related U.S. Application Data A method for operating a seeker device includes generating a
(60) Provisional application No. 61/806,177, filed on Mar. first seeker tmcated hash output from a sought service name,
28.2013. and generating a second seeker truncated hash output from
’ the sought service name, wherein the first seeker truncated
ash output and the second seeker truncated hash output are
(51) Int.CL hash output and th d seek: d hash outp
HO4L 29/08 (2006.01) uncorrelated. The.metho.d also includes transmitting a first
HO4W 8/00 (2009.01) request message including the first seeker truncated hash
(52) US.CL output, and receiving a first response message from an adver-
CPC ... HO4W 8/005 (2013.01); HO4L 29/08423 tiser d.eVice, the first response message including a secpnd
(2013.01); HO4L 29/08648 (2013.01); HO4L adve.rtlser truncated hash output generated from an advertised
67/1061 (2013.01); HO4L 67/16 (2013.01) service name, wherein the first seeker truncated hash output
. . . matches a first advertiser truncated hash output generate
(58) Field of Classification Searc’h h fi dverti d hash output g d

None
See application file for complete search history.

200 ~
205 __PROBES
n 77T U BEAGONS Ty
DEVICE 1 v T
207 GAS
2 ANQP REQUEST
DEVICE 2 _ ANQP RESPONSE
209~ E
I —
DEVICE N ASSOCIATION &

AUTHENTICATION

from the advertised service name.

31 Claims, 14 Drawing Sheets

= SERQC? : -
AGCESS POINT f[«—» PROVIDER {e—> H?ﬂgﬂs\l(}
NETWORK
A
v 25
HLRS

U.S. Patent Oct. 6, 2015 Sheet 1 of 14 US 9,154,934 B2

100 ~
DEVICE 10~
DEVICE
w74
—2Z__
105~
AP
1
12~ ~zz_
DEVICE
114~
DEVICE
24
116~ T 2L
DEVICE
TZZ 118~
DEVICE

Fig. 1

US 9,154,934 B2

Sheet 2 of 14

Oct. 6, 2015

U.S. Patent

¢

A

SYTH
AN
Y
SHOMLIN
@mﬁx@wm > HI0NOKd
OIS
02g- g1z~

A 4

INIOd SS330V

012~

NOILYIUNIHLNY
¥ NOIYIO0SSY

v TN

v

ISNOJS3H dONV

i

Z ‘S

N 30130

\-602

1S3N034 dONY
NS

~ — ——

$4904d

¢ 3010

\- 102

L 3030

\-602

U.S. Patent Oct. 6, 2015 Sheet 3 of 14 US 9,154,934 B2

300
310~
DEVICE A
ADVERTISER 1
312~ 305
DEVICE B DEVICE D
ADVERTISER 2 —ZZ_ SEEKER

314~

DEVICE C
ADVERTISER 3

Fig. 3

US 9,154,934 B2

Sheet 4 of 14

Oct. 6, 2015

U.S. Patent

b SL
(SNUVIS
30IA43S NOLLYINHOANI 30IAHIS._
Obr =P ‘0l ISULIACY TN 30IALIS) INIHOLYA
ISNOASIY AHIA0DSIC FOINHIS NOHLVHCINI
(1SN0 NOILYWHOANI FOIAH3S
_p— J0IH3S IWYN F0igS) —-~—/INIHOLYIN FAWN (|
9ey 1S3N0T AYIA00SID TOINGIS 8
1SIn03 (S)01 ISLLHIACY [SHWYN 3DIAHIS) T kY
BTN J00ud ONINOI HOS vy INOdSTY I0Hd dad |\ OMHOLYA HSVH

INYN IDIAHIS THL 40 HSYH $1S3N034

962 YHS 40 S13190 9 1SHH | (SIHSYH 30IA4IS) 3904d 0L INIONOASTH

SASN ONY SILYHINID dSY 05k —F 1SIN03Y 3804d d2d HO4 INYN I0IAHTS

- > 3HL 40 HSVH STLYHANTD dSY N 71
gzy—" (0IAHISHAIS I_
1oy OIS SCM 0¥ —]
(FNASTSILANDY =02
I9IA3S dSy [ded | dzd dSy BRI
Gly 91y Ly ZLy L1y 0Ly
_ TI04 HHIIS ‘g I0IAT0 _ _ T10H HASUHIACY ¥ I0IAA _
L0y~ -Gy
A= oov

US 9,154,934 B2

Sheet 5 of 14

Oct. 6, 2015

U.S. Patent

¢ .%.N ' 1INS34 (SNLYLS F0IAYTS
/' HOHvaS NOUVIAHOINI | - gy
s < JomdEs /]
a1 3SHYINY
‘A ONNO4) grc
LINSIUHOUYAS 7~
A = X SHIAISNOD dSV 6
OJTHSYH _ *
- (AIPHSYH '8 (SMLVLS FIAHAS ‘NOILVINHOINI FINHTS .h\ g
< 0 ININISIHIAQY OYHSVH] ONHOLYM
/ ISNOSTH AHIA0DSIQ FIIAES 2 NOLLYINHOSN IS
9€g omm/u (1S3N034 NOLYWHOANI Ny
IS WEHSYH] ——1~" (\JeHSYH = D)SHRYH 9
DIZHSYH 1S3N03Y AYIA0DSIT FDIAHTS G
= [AICHSYH ¥ | gz¢
. ()01 INFWISILHINOY DICHSYH__ /] 265
ISNOdS3H 390Hd d2d € (A} LHSWH
825 225 WiHsH ~ (LHSYH 2
a5 2 025~ 1S3N034 3904d dzd 'L _
TAWHSYH ONY ASHSYH TAIZHSYH DOPHSYH ONV DISHSVH DOZHSYH pgc
A LHSYH STAYHINTD dSV DO LHSYH STLVHIND dSV
815~ (A FWYN JONHIS) v_ \ _A (X NN JOINHIS) 4215
915~ W I0INHASHIIS plG ONISISILEANGY | (0 I0IAIS =016
J9IAH3S WS ISUHIAQY
I Wddy | | 30m43s | dSy dSy | 30IA43S | 0 ddy |
_ TI04 HIEIS ‘g F0IAQ _ _ T104 YISUHIAGY V 3010 _
\- 208 \-60g

U.S. Patent Oct. 6, 2015 Sheet 6 of 14 US 9,154,934 B2

- 605
GENERATE HASHES OF
SERVICE_NAME_SEEKER ()

] 607

TRANSMIT REQUEST]
WITH HASH1{Y)

600 ~

v 609

RECEIVE RESPONSE
WITH HASH2(X)

v _/" 611
RECEIVED HASH2(4 = | N
HASH2(Y)?

Y1 613

TRANSMIT REQUEST]
WITH HASH3Y)

l 615

RECEIVE RESPONSE
WITH HASH4(X

617

RECEIVED HASHAX) = | N
HASHA4(Y)?

Y] 619

DETERMINE THAT SERVICE
Y IS PROVIDED BY
ADVERTISER

<
4

END

Fig. 6a

U.S. Patent Oct. 6, 2015 Sheet 7 of 14 US 9,154,934 B2

650 ~

- 655
GENERATE HASHES OF
SERVICE_NAME_ADVERTISER (]

1 657

RECEIVE REQUEST
WITH HASH1Y)

I 659

RECEIVED HASH1(Y) = | N
HASH1(X)?

Y] - 661

TRANSMIT RESPONSE
WITH HASH2(X)

1 663

RECEIVE REQUEST
WITH HASH3(Y)

} 665

RECEIVED HASH3Y) = | N
HASH3({?

Yl 667

TRANSMIT RESPONSE
WITH HASH4(X)

A

END

Fig. 6b

US 9,154,934 B2

Sheet 8 of 14

Oct. 6, 2015

U.S. Patent

. . ns (SNLVLS IDIALAS
L %E A\ HOHY3S ‘NOILVINHOINI
o s |
ad; aISUMINY N~og/
‘A GNNO4) bes
1INSHHOHYAS Ve
A= X SHIAISNOD dSV 2
(XI9HSYH _ 05,
~ (NSHSYH 9 (SNLYLS FOIAS NOLLYWHOINI F0NE3S
A 'O ININASIHIAQY (XIOHSYH) - ONIHOLYIY
3SN0dS3H 0¥d NOUYWHOANI TAH3S
@NN// (1SANOTY NOLLYWHOANI aNy
A JOIAYES (AIGHSYH) ——— AIGHSYH = [XISHEYH
DOOHSYH 1530034 Ovd '€ g7/
\.l.z%w% 2
2l - (OOHSYH)
04 HO 'NOOVAE 14OHS NOVAd | ~zz/
0w, A (AJOHSYH ANV (AISHSYH DIGHSYH ONY DYSHSYH
AOHSYH SALVHINID dSY XIOHSYH STIYHINID dSV
812~ (A VN 30138 / \ <IN FONIS) p—ell
SN W | 30mEsEEs 0c. hiL JONISTSILIATY | 00 30IAH3S 1~ OH
JONHIS 338 SUHIAY
| Wddv | | 39nd3s | dSy [dsv [30m3s | | Dddy |
_ J104 H333S ‘9 3030 _ _ T104 HISILHAAAY ¥ 30IA30 _
Sl 50/

US 9,154,934 B2

Sheet 9 of 14

Oct. 6, 2015

U.S. Patent

9 -1 g | 11NS3Y (SNLYLS FINHAS
. \ HOHYAS ‘NOLYNHOANI
QL ISILEINAY ~ggg
‘A ONNOH) veg
1INSIHHOHYAS 7
A= X SHIAISNOD dSY
(X)8HSYH h 059
- (AHSYH 9 (SIIYIS JOINGIS NOUVWHOIN F0NH3S 1~
o / - 0] INIWISHYIAQY X8HSYH) — SNIHOLY
JNVH NOILDY HSNANd 'S NOLYAHOAN 3RS
9¢8 N (1SAN03Y NOLVINHOANI any
/™ A0S WLHSVH) — ——1~"" () HSWH = DLHBYH 7
DIOHSYH YL NOLLDY 3E1H0SENS '€ N
\uzoxﬁx (2
> N el e o e e e e e e e et e e e e e e e e e e e e e
et T (i0HSvHINGOvYS | N
oo 2
INBHSYH ONY {AZHSYH T)BHSYH ONY ()2HSYH
TNOHSYH SALVHINID dSV TIOHSYH SALYHINID dSV
818~k A IWYN 0IA43S) / \ - XCIAYN 30A3S) d2ie
9B T~ W | FomgEIsmEIs 08 718 T I0NISISIEINGY | 00 30IMS 018
FOIAHIS IS | ISIHANY
| Wddv | | 30438 | dsy dsy |3omaas | [boddv |
_ 7104 HIFIHOSANS/HINAIS ‘8 39IAT0 _ _ T104 HIHSANd/HISHEFAY vV 30130 _
\- /08 \-609

U.S. Patent Oct. 6, 2015 Sheet 10 of 14 US 9,154,934 B2

FRAME TYPE

INPUT (EG. SERVIGE 305 910~ TRUNCATED HASH

NAME) - HASH - TRUNGATION QUTPUT
FUNCTION FUNCTION

Fig. 9

(1000

FRAME TYPE

I
INPUT (EG. SERVICE ~1005 1010~ 1015 + TRUNCATED HASH
NAME) - INPUT HASH TRUNCATION QUTPUT

MODIFIER ™ FUNGTION ™ FUNGTION

Fig. 10

U.S. Patent Oct. 6, 2015 Sheet 11 of 14 US 9,154,934 B2

v 1100
‘FRAMETYPE’
1105~
“‘SERVICENAME" ‘FRAMETYPESERVICENAME”
| APPEND >
Fig. 11
v 1200
VALUE(FRAME TYPE)

120
a 1210

‘SERVICENAME" | STRING 10
» BNARY [— .

CONVERTER

Fig. 12

U.S. Patent

Oct. 6, 2015 Sheet 12 of 14 US 9,154,934 B2

1300 ~

1305

GENERATE HASHES OF
SERVIGE_NAME_SEEKER

1 1307
REGEIVE BEACON WITH
HASHOO

1 1309
RECEIVED HASHOU) - | N
HASHOWY)?

vl 1311
TRANSMIT REQUEST
WITH HASH1Y)

1 1313
RECEIVE RESPONSE
WITH HASH2(X)

1 1315
REGEIVED HASH20 = | Ny
HASHY)?

Yl 1317

DETERMINE THAT SERVICE
Y IS PROVIDED BY
ADVERTISER

*

A

END

Fig. 13

U.S. Patent

Oct. 6, 2015 Sheet 13 of 14 US 9,154,934 B2

1400 ~

1405

GENERATE HASHES OF
SERVICE_NAME_ADVERTISER

1 1407
TRANSMIT BEAGON
WITH HASHOIX

1 1409

RECEIVE REQUEST
WITH HASH1{Y)

IS

RECEIVED HASH1(Y) = | N
HASH1{X)?

Y] 1413

TRANSMIT RESPONSE
WITH HASH2(X)

A

END

Fig. 14

U.S. Patent Oct. 6, 2015 Sheet 14 of 14 US 9,154,934 B2

1500\

1505~ 1510~ 1530~
TRANSMITTER RECEIVER MEMORY
1515~
1520~ 1520~
TRUNCATING
HASHING UNIT N
1524~ 1526~
MODIFYING COMPARING
UNIT UNIT

Fig. 15

US 9,154,934 B2

1
SYSTEM AND METHOD FOR
PRE-ASSOCIATION DISCOVERY

This application claims the benefit of U.S. Provisional
Application No. 61/806,177, filed on Mar. 28, 2013, entitled
“Systems and Methods for Pre-Association Discovery,”
which application is hereby incorporated herein by reference.

TECHNICAL FIELD

The present disclosure relates generally to digital commu-
nications, and more particularly to a system and method for
pre-association discovery.

BACKGROUND

The IEEE 802.11 family of technical standards and atten-
dant technology, also commonly referred to as Wi-Fi, is
evolving towards a service-centric model of connectivity
where devices connect for a specific purpose. The purposeful
connections are triggered by applications looking for peer
devices that support specific services. Examples of these ser-
vices include file sharing, printing, media streaming, sensor
information, and the like.

SUMMARY OF THE DISCLOSURE

Example embodiments of the present disclosure which
provide a system and method for pre-association discovery.

In accordance with an example embodiment of the present
disclosure, a method for operating a seeker device is pro-
vided. The method includes generating, by the seeker device,
a first seeker truncated hash output from a sought service
name, and generating, by the secker device, a second seeker
truncated hash output from the sought service name, wherein
the first seeker truncated hash output and the second seeker
truncated hash output are uncorrelated. The method also
includes transmitting, by the seeker device, a first request
message including the first seeker truncated hash output,
receiving, by the seeker device, a first response message from
an advertiser device, the first response message including a
second advertiser truncated hash output generated from an
advertised service name, wherein the first seeker truncated
hash output matches a first advertiser truncated hash output
generated from the advertised service name, and determining,
by the seeker device, that the advertised service name
matches the sought service name in response to determining
that the second advertiser truncated hash output matches the
second seeker truncated hash output.

In accordance with another example embodiment of the
present disclosure, a method for operating an advertiser
device is provided. The method includes generating, by the
advertiser device, a first advertiser truncated hash output from
an advertised service name, and generating, by the advertiser
device, a second advertiser truncated hash output from the
advertised service name, wherein the first advertiser trun-
cated hash output and the second advertiser truncated hash
output are uncorrelated. The method also includes receiving,
by the advertiser device, a first request message from a seeker
device, the first request message including a first seeker trun-
cated hash output generated from a sought service name, and
transmitting, by the advertiser device, a first response mes-
sage including the second advertiser truncated hash output in
response to determining that the first seeker truncated hash
output matches the first advertiser truncated hash output.

In accordance with another example embodiment of the
present disclosure, a secker device is provided. The seeker

10

15

20

25

30

35

40

45

50

55

60

65

2

device includes a processor, a transmitter operatively coupled
to the processor, and a receiver operatively coupled to the
processor. The processor generates a first seeker truncated
hash output from a sought service name, generates a second
seeker truncated hash output from the sought service name,
wherein the first seeker truncated hash output and the second
seeker truncated hash output are uncorrelated, and determines
that an advertised service name from an advertiser device
matches the sought service name in response to determining
that a second advertiser truncated hash output received from
the advertiser device matches the second seeker truncated
hash output. The transmitter transmits a first request message
including the first seeker truncated hash output. The receiver
receives a first response message from the advertiser device,
the first response message including the second advertiser
truncated hash output generated from the advertised service
name, wherein the first seeker truncated hash output matches
a first advertiser truncated hash output generated from the
advertised service name.

In accordance with another example embodiment of the
present disclosure, an advertiser device is provided. The
advertiser device includes a processor, a receiver operatively
coupled to the processor, and a transmitter operatively
coupled to the processor. The processor generates a first
advertiser truncated hash output from an advertised service
name, and generates a second advertiser truncated hash out-
put from the advertised service name, wherein the first adver-
tiser truncated hash output and the second advertiser trun-
cated hash output are uncorrelated. The receiver receives a
first request message from a secker device, the first request
message including a first seeker truncated hash output. The
transmitter transmits a first response message including the
second advertiser truncated hash output in response to deter-
mining that the first seeker truncated hash output matches the
first advertiser truncated hash output.

One advantage of an embodiment is that signaling over-
head is reduced by transmitting truncated hash function out-
puts of the full service names rather than the full service
names, which are typically shorter than the full service
names.

A further advantage of an embodiment is that privacy is
maintained and false match probability is reduced by trans-
mitting different and yet uncorrelated hash function outputs
of service names or truncations thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure, and the advantages thereof, reference is now made to the
following descriptions taken in conjunction with the accom-
panying drawing, in which:

FIG. 1 illustrates a first example communications system
according to example embodiments described herein;

FIG. 2 illustrates a second example communications sys-
tem according to example embodiments described herein;

FIG. 3 illustrates a portion of an example communications
system highlighting pre-association discovery according to
example embodiments described herein;

FIG. 4 illustrates an example message exchange diagram
highlighting a pre-association discovery procedure;

FIG. 5 illustrates an example message exchange diagram
highlighting a pre-association discovery procedure that helps
to protect privacy and to reduce signaling overhead while
maintaining an acceptable probability of false match accord-
ing to example embodiments described herein;

FIG. 6q illustrates a flow diagram of first example opera-
tions occurring in a seeker device as the seeker device per-

US 9,154,934 B2

3

forms a pre-association discovery procedure according to
example embodiments described herein;

FIG. 65 illustrates a flow diagram of first example opera-
tions occurring in an advertiser device as the advertiser device
performs a pre-association discovery procedure according to
example embodiments described herein;

FIG. 7 illustrates a first alternative example message
exchange diagram highlighting a pre-association discovery
procedure according to example embodiments described
herein;

FIG. 8 illustrates a second alternative example message
exchange diagram highlighting a pre-association discovery
procedure according to example embodiments described
herein;

FIG. 9 illustrates a first example unit for generating difter-
ent truncated hash output using a common hash function
according to example embodiments described herein;

FIG. 10 illustrates a second example unit for generating
different truncated hash output using a common hash func-
tion according to example embodiments described herein;

FIG. 11 illustrates a first example Input Modifier unit
according to example embodiments described herein;

FIG. 12 illustrates a second example Input Modifier unit
according to example embodiments described herein;

FIG. 13 illustrates a flow diagram of second example
operations occurring in a seeker device as it participates in a
pre-association procedure according to example embodi-
ments described herein;

FIG. 14 illustrates a flow diagram of second example
operations occurring in an advertiser device as it participates
in a pre-association procedure according to example embodi-
ments described herein; and

FIG. 15 illustrates an example communications device
according to example embodiments described herein.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The operating of the current example embodiments and the
structure thereof are discussed in detail below. It should be
appreciated, however, that the present disclosure provides
many applicable inventive concepts that can be embodied in a
wide variety of specific contexts. The specific embodiments
discussed are merely illustrative of specific structures of the
disclosure and ways to operate the disclosure, and do not limit
the scope of the disclosure.

One embodiment of the disclosure relates to pre-associa-
tion discovery. For example, a seeker device generates a first
seeker truncated hash output from a sought service name, and
generates a second seeker truncated hash output from the
sought service name. The seeker device also transmits a first
request message including the first seeker truncated hash
output, and receives a first response message from an adver-
tiser device, the first response message including a second
advertiser truncated hash output generated from an advertised
service name, wherein the first seeker truncated hash output
matches a first advertiser truncated hash output generated
from the advertised service name.

The present disclosure will be described with respect to
example embodiments in a specific context, namely commu-
nications systems that support service centric connections
and pre-association to discover services prior to the establish-
ment of a connection. The disclosure may be applied to stan-
dards compliant communications systems, such as those that
are compliant with IEEE 802.11, IEEE 802.15, Wi-Fi Alli-
ance, Third Generation Partnership Project (3GPP), and the
like, technical standards, and non-standards compliant com-

10

15

20

25

30

35

40

45

50

55

60

65

4

munications systems, that support service centric connec-
tions and pre-association discovery.

FIG. 1 illustrates a first example communications system
100. Communications system 100 includes an access point
(AP) 105 that is serving a plurality of devices, such as device
110, device 112, device 114, device 116, and device 118. An
AP may also be commonly referred to as a base station, a
communications controller, a controller, a NodeB, an evolved
NodeB (eNB), and the like. A device may also be commonly
referred to as a station, a user equipment (UE), a mobile
station, a mobile, a user, a subscriber, a terminal, and the like.
In a first communications mode, the devices may communi-
cate through AP 105 by transmitting a frame to AP 105, which
forwards the frame to its intended recipient. In a second
communications mode, a first device may transmit a frame
directly to a second device without having to go through AP
105.

While it is understood that communications systems may
employ multiple APs capable of communicating with a num-
ber of stations, only a single AP, and a number of devices are
illustrated in FIG. 1 for simplicity.

Conventionally, a connection between devices, such as
Wi-Fi devices, needs to be established, which is accom-
plished by a successful completion of authentication, asso-
ciation, and in some cases, the IP address assignment, before
service data may be exchanged between the devices. How-
ever, the amount of signaling overhead and delay incurred by
the authentication, association, and 1P address assignment
procedures may become undesirable if the requested services
can’t be met by the connected device, since the signaling
overhead and delay are wasted and other service providers are
sought out. Thus, the notion of pre-association discovery has
been introduced, wherein the procedure for discovering
devices and the services that the devices provide, or at least a
part of this procedure, is conducted before a connection is
made, i.e., before the authentication and association proce-
dure. In this way, the connection is established between the
devices only when the requested services can be met.

Primary mechanisms for device discovery in Wi-Fi are
passive scanning and active scanning. In passive scanning, a
first Wi-Fi device listens to a Beacon frame that is transmitted
by a second Wi-Fi device. Based on the received Beacon
frame, the first Wi-Fi device discovers the second Wi-Fi
device. Since a Beacon frame is usually broadcasted once a
while (normally on the order of 100 milliseconds), the first
Wi-Fi device suffers long delay and high power consumption
in discovering the second Wi-Fi device using the passive
scanning. In active scanning, a requesting Wi-Fi device (or a
seeker Wi-Fi device) transmits a request frame, such as a
Probe Request frame, which may include the information of
a requested Wi-Fi device or a requested service. A Wi-Fi
device that matches with the information of the requested
Wi-Fi device or the requested service (also commonly
referred to as a responding Wi-Fi device) responds back by
sending a response frame, such as a Probe Response frame,
which may include more information of the responding Wi-Fi
device or the requested service such that the requesting (or
seeker) Wi-Fi device may decide to make a connection with
the responding Wi-Fi device or not. Hence, active scanning
allows faster discovery, comparing to passive scanning, but
uses additional air time for signaling overhead. Active scan-
ning may not scale well in crowded environments. As an
example, if Wi-Fi applications on devices were all using
active scanning in a crowded venue to continuously discover
peers, there would be an excessive amount of traffic just
carrying the Probe Request and Probe Response frames
alone.

US 9,154,934 B2

5

In addition to device discovery, IEEE 802.11u provides
network discovery mechanisms based on the transmission of
a group of Public Action frames, which are known as the
Generic Advertisement Service (GAS) Request and GAS
Response frames and are used to carry the query data and
response data for advertisement protocols such as Access
Network Query Protocol (ANQP). FIG. 2 illustrates the GAS
and ANQP operation. First, a user of a device initiates the
intention to connect to Wi-Fi, and the user’s device scans for
available access points, which are also referred to as the Wi-Fi
hotspots. In IEEE 802.11u, GAS frames are used to provide
for Layer 2 transport of query data and response data of an
advertisement protocol between the client on the user’s
device and a server in the network prior to authentication and
association. In IEEE 802.11u, ANQP is a particular adver-
tisement protocol used to discover different features and
available services of the access network. After receiving the
ANQP response data, theuser’s device selects a particular AP,
and then proceeds with the authentication and association
procedures which results in the establishment of a connection
with the AP.

FIG. 2 illustrates a second example communications sys-
tem 200. Communications system 200 may be an example of
a Wi-Fi compliant communications system. Communications
system 200 may utilize communications services and proto-
cols, such as GAS and ANQP, to support operations including
scanning and network selection. In general, GAS frames may
be used to provide Layer 2 transport of query data and
response data of an advertisement protocol, such as ANQP,
between a terminal and a server in a communications system,
such as communications system 200, prior to or post authen-
tication (of the terminal, for example). Typically, ANQP may
be used to discover different features and/or services of the
communications system. A device compares the information
regarding different networks or access points to select the best
suitable to associate with. The device may proceed with an
authentication process.

Usually, a station may be used to refer to any of the devices
(such as devices 205, 207, and 209) shown in FIG. 2, which
may include a cell phone, a laptop computer, a tablet, a smart
sensor, a handheld or consumer electronic device, as well as
other devices that have an interface (such as a Wi-Fi interface)
that can interact with communications system 200. Some or
all of the stations may also be able to interact with other types
of communications systems, such as cellular networks, Blue-
tooth, proprietary networks, and the like.

An AP 210 and one or more stations may form a basic
service set (BSS), which is the basic building block of a Wi-Fi
communications system. A BSS may be identified by a ser-
vice set identifier (SSID), which is a configured identifier and
may be broadcasted by an AP of the BSS, such as AP 210. AP
210 may communicate with an AP controller or/and an ANQP
server, which can be co-located or not with AP 210. AP 210
may be connected to a service provider network 215, which is
connected to one or more roaming hubs 220. Roaming hubs
220 may be connected to home location register (HLRs) 225.
Roaming hubs 220 and HL.Rs 225 provide support for device
mobility, i.e., roaming.

In the Wi-Fi Direct specification, the Wi-Fi Alliance
(WFA) further extended the usage of IEEE 802.11u GAS
frame format to create two WFA-specific frames, namely the
Service Discovery Request and Service Discovery Response
frames. In Wi-Fi Direct, the Probe Request/Response frames
are mandatorily used for peer-to-peer (P2P) device discovery.
Then the Service Discovery Request/Response frames are
optionally used to allow service discovery between peer
devices in a pre-association state.

20

25

30

40

45

55

6

As discussed previously, in pre-association discovery, a
requester device (or seeker device) may be able to discover
services provided by an advertiser device or determine if the
advertiser devices provides a requested service prior to com-
pleting a potentially delay filled authentication and associa-
tion procedure.

FIG. 3 illustrates a portion of an example communications
system 300 highlighting pre-association discovery. Commu-
nications system 300 includes a seeker device (device D) 305
and a plurality of advertiser devices, such as device A 310,
device B 312, and device C 314. Seeker device 305 may
perform pre-association discovery with some or all of the
plurality of advertiser devices until it finds the service that it
is looking for or it finds that the service is unavailable. As an
example, seeker device 305 may perform pre-association dis-
covery with device A 310. If device A 310 does not offer the
service, seeker device 305 may perform pre-association dis-
covery with device B 312. If device B 312 does not offer the
service, seeker device 305 may perform pre-association dis-
covery with device C 314. Alternatively, secker device 305
may send a query about a service in a broadcast manner. Then,
those devices, among device A 310, device B 312, and device
C 314, who offer the service, may respond to device 305
individually.

In the on-going Wi-Fi Direct Services (WFDS) specifica-
tion project in the WFA, proposals have been received to
enhance the service discovery. First, each service is repre-
sented by a UTF-8 service name string. For example, the
service name defined in the WFDS draft specification for
printer service is “org.wi-fi.wfds.print.tx”. The Wi-Fi Alli-
ance further recommends that “Reverse domain name nota-
tion” is used for service names of services not defined by the
Wi-Fi Alliance. Such a naming convention helps to ensure
unique service names among services provided by different
software developers.

In the WFDS draft specification that is currently being
developed in the WFA, the Probe Request/Response frames
are used to discover the service name, in addition to discov-
ering the P2P device. Then the Service Discovery Request/
Response frames are used to discover the service status (i.e.
availability) and the service information attribute, which is
application-defined data or strings, typically written in Exten-
sible Markup Language (XML) format, describing the ser-
vice and service parameters.

FIG. 4 illustrates an example message exchange diagram
400 highlighting a pre-association discovery procedure,
according to a draft WFDS specification. Message exchange
diagram 400 illustrates messages exchanged between a
device A 405 operating in an advertiser role and a device B
407 operating in a seeker role. Device A 405 includes multiple
layers, such as service layer 410, application service platform
(ASP) layer 411, and peer-to-peer (P2P) media access control
(MAC) layer 412. Similarly, Device B includes service layer
415, ASP layer 416, and P2P MAC layer 417. The details of
the layers below the P2P MAC layers, such as the physical
(PHY) layers, are intentionally omitted.

Service layer 410 of device A 405 may initiate an adver-
tisementservice() procedure with ASP layer 411 (shown as
event 420) with a service_name_advertiser of a service pro-
vided by device A 405, which results in ASP layer 411 adding
a WFDS service (shown as event 422). ASP layer 411 may
also generate a hash of the service_name_advertiser (shown
as event 424). The hash may be generated using a hashing
function, such as SHA-256, for example. As an example, for
a service_name_advertiser of “org.wifi.example”, the Ser-
vice Hash, which is the first 6 octets of the output of the
hashing function, (in hexadecimal) is 4e-ce-7e-64-39-49.

US 9,154,934 B2

7

When a truncated SHA-256 hash output is used as an identi-
fier of a service, a false match event may occur when the
service name offered by an advertiser device is different from
the service name sought by a seeker device and yet the two
different service names happen to yield the same truncated
hash output. The probability of false match is a function of the
length of the truncated hash output. A sufficient length of the
truncated SHA-256 hash output can produce relatively low
probability of false match. As an example, the 6-octet (48-bit)
Service Hash, as being specified in the WFDS draft specifi-
cation in the WFA, yields a probability of false match of
roughly 27** or 5.96x107%,

Device B 407 is seeking a service and service layer 415
may initiate a seekservice() procedure with ASP layer 416
(shown as event 426) with service_name_seeker of a service
being sought by device B 407. ASP layer 416 may generate a
hash of service_name_secker (shown as event 428). The hash
may be generated using a hashing function, such as SHA-256,
for example. As with device A 405, device B 407 generates a
Service Hash, which is the first 6 octets of the output of the
hashing function. Device B 407 may transmit a P2P Probe
Request including the Service Hash (shown as event 430).

Device A 405 may perform a check to determine if its
Service Hash (generated from service_name_advertiser)
matches the Service Hash received in the P2P probe request
(generated from service_name_seeker) (shown as event 432).
In general, in order for the Service Hashes to match, the
hashing functions used to generate the Service Hashes have to
be the same, the inputs to the hashing functions also have to be
the same (with the exception of the false match as described
above), and the truncation functions used have to be the same.
Ifthe Service Hashes match, device A 405 may transmit a P2P
Probe Response including the service_name_advertiser of
the matching Service Hash (shown as event 434). Device B
407 may perform a check to determine if the service_
name_advertiser received from device A 405 matches the
service_name_seeker. If there is a match, device B 407 may
transit a Service Discovery Request frame with the service_
name_seeker and a request for additional service information
to device A 405 (shown as event 436).

Device A 405 may perform service name matching and
service information matching (shown as event 438) and
respond back with the requested additional service informa-
tion in a Service Discovery Response frame (shown as event
440). It is noted that the full service name used in the Probe
Response frame provides zero residual probability of false
match between the service that the service seeker seeks and
the service that the service advertiser advertises, assuming all
service names are unique. The full service names used in the
Service Discovery Request/Response frames serve as an
identifier to form a binding between a service and the request
or response of additional service information of that service
that is carried in the Service Discovery Request or Service
Discovery Response frame, respectively.

According to the example message exchange described
above, the full service name carried in Probe Response, Ser-
vice Discovery Request, and Service Discovery Response
frames tends to be a much longer string than the truncated
hash output of the service name, requiring extra signaling
overhead. Substituting a short identifier of a fixed length for
the full service name of a variable length may be advanta-
geous. Furthermore, the service names in the Probe
Response, Service Discovery Request, and Service Discov-
ery Response frames are fully exposed to unintended parties,
since these frames are not protected by security or privacy
protection measures due to their nature of being pre-associa-
tion. In certain applications, it is desirable to protect a user’s

40

45

50

55

8

privacy, for example, the services being offered or being
sought by the user. In some cases, an identifier of a user’s
device or an identifier of the user himself/herself (such as a
name or e-mail address) may be a part of the service name.
Fully exposing the service name to unintended parties may
leak the user’s privacy in these cases. Therefore, measures
may be needed to avoid exposing the service name in message
exchanges during the pre-association state.

According to an example embodiment, a pre-association
procedure may help to reduce signaling overhead by
exchanging less service related information while helping to
maintain an acceptable probability of false match. Further-
more, the pre-association procedure may help to maintain
privacy of users by making it difficult for an eavesdropper to
obtain information about the service, the device, or the user
information that is being advertised or being sought.

According to an example embodiment, a truncated hash
output of the service name may be used in each message
frame where there is a need to identify the service during the
pre-association state, for example, not only in the Probe
Request frame, but also in the Probe Response frame, the
Service Discovery Request frame, and the Service Discovery
Response frame, and so on. The truncated hash outputs gen-
erated from the same service name for these message frames
are different from each other. Matching between two corre-
sponding truncated hash outputs, one received and one self-
generated, is performed when each of these frames is
received. The discovery procedure may proceed only if a
match is found. Thus, a false match between two truncated
hash outputs occurred in an earlier message frame remains
undetected if and only if the false matches between the cor-
responding truncated hash outputs also occur in all subse-
quent message frames. In another word, a false match must
happen at all stages in order for the false match remains
finally undetected. According to probability theory, in order
to minimize the probability that false matches have occurred
in all relevant frames up to a given point during a pre-asso-
ciation discovery procedure, which is the residual false match
probability at the given point, one needs to make these false
match events totally independent of each other.

The example embodiments provides various methods for
generating different truncated hash outputs from a given ser-
vice name in a manner that these truncated hash outputs are
totally uncorrelated to each other, so as to ensure that false
matches of the truncated hash outputs occur totally indepen-
dently in each different frame. Thus, the residual probability
of false match in each subsequent frame is the product of
probabilities of false match of the truncated hash outputs
occurring in the current and all previous message frames.
Therefore the residual probability of false match is reduced
exponentially in each subsequent message frame. This pro-
vides the room for further reducing the length of each trun-
cated hash output at each message frame, thus further reduc-
ing the signaling overhead in these message frames. Although
the probability of false match at the initial message frame may
berelatively high as a result of reduced length of the truncated
hash output, a false match event occurred at the initial frame
will likely be detected by the mismatch of the truncated hash
output in a subsequent message frame. Then the service
seeker or the service advertiser can determine that the service
being sought and the service being advertised are in fact
different. Thus, the service discovery procedure may be ter-
minated immediately or after a negative response is sent to the
peer with a proper result/reason code.

FIG. 5 illustrates an example message exchange diagram
500 highlighting a pre-association discovery procedure that
helps to protect privacy and to reduce signaling overhead
while maintaining an acceptable probability of false match.

US 9,154,934 B2

9

Message exchange diagram 500 illustrates messages
exchanged between a device A 505 and a device B 507.
Device A 505 and device B 507 includes multiple layers,
including application (APP) layers, service layers, and ASP
layers. The details of the layers below the ASP layers, such as
PHY layers and MAC layers, are intentionally omitted.

An application in Device A 505 may request to advertise a
service X provided by the application (shown as event 510).
The request may result in the initiation of an advertisement-
service() procedure with a service_name_advertiser of ser-
vice X (shown as event 512). Device A 505 may generate a
plurality of truncated hash outputs of service_name_adver-
tiser unique to different frame types (shown as event 514). An
application in Device B 507 is secking a service and may
initiate a seekservice() procedure with service_name_seeker
of'aserviceY being sought by device B 507 (shown as events
516 and 518). Device B 507 may generate a plurality of
truncated hash outputs of service_name_seeker unique to
different frame types (shown as event 520).

As an illustrative example of generating different and yet
uncorrelated truncated hash outputs from a given service
name, device A 505 may utilize four different truncations of
the output of a hashing function utilizing service_name_ad-
vertiser of service X as input, with the four different truncated
hash outputs denoted as Hash1(), Hash2(), Hash3(), and
Hash4(). For discussion purposes, consider a situation where
service_name_advertiser comprises a text string of “A”, then

Hash1(A)=Truncatel(Hash(“A™));

Hash2(A)=Truncate2(Hash(“A™));

Hash3(A)=Truncate3(Hash(“A”)); and

Hash4(A)=Truncate4(Hash(“A™)),
where Hash() represents a common hashing function, such as
SHA-256, and Truncatel(), Truncate2(), Truncate3(), and
Truncate4() represent four different truncation functions
used for producing different truncated hash output based on a
type of the frame that carries the truncated hash output. SHA-
256 hash function has ideal cryptographic properties such
that a portion of its hash output is generally totally uncorre-
lated to (or independent of) another portion of its hash output
if these two portions have no overlapping region. Therefore,
according to an example embodiment, the truncation func-
tions have non-overlapping bit patterns, e.g., Truncatel()
takes the first 6 octets of SHA-256 output, Truncate2() takes
the second 6 octets of SHA-256 output, and so on. Device B
507 may utilize the same hashing function and Truncatel(),
Truncate2(), Truncate3(), and Truncate4() as device A 505
but with service_name_seeker of service Y as the input.

As another illustrative example of generating different and
yet uncorrelated truncated hash outputs from a given service
name, device A 505 may use a single truncation of an output
of a hashing function utilizing different modified versions of
service_name_advertiser of service X depending on the type
of the frame that carries the truncated hash output. For dis-
cussion purposes, consider a situation where service_
name_advertiser comprises a text string of “A”, then

Hash1(A)=Truncate(Hash(“probe.request.A™));

Hash2(A)=Truncate(Hash(“probe.response.A™));

Hash3(A)=Truncate(Hash(“sd.request.A”)); and

Hash4(A)=Truncate(Hash(“sd.response.A™)),
where Hash() and Truncate() represent a common hash
function, such as SHA-256, and a common truncation func-
tion, respectively, while a different prefix is added to servi-
ce_name_advertiser for different frame types, and “probe.re-
quest.A” represents the process of appending the string
“probe.request” to the service name string “A”, since
Hash1() function is used for the Probe Request frame, and so
on for the processes of appending the other prefixes for the

10

15

20

25

30

35

40

45

50

55

60

65

10

other types of frame, respectively. Device B 507 may utilize
the same modification processes, the same hashing function,
and the same truncation function as device A 505 but with
service_name_seeker of service Y as the input. The ideal
cryptographic properties of SHA-256 hash function ensure
that the hash outputs of differently modified versions of the
same service name are totally uncorrelated to each other, no
matter how small the modifications are. Therefore, even if an
identical truncation pattern is used for truncating, the trun-
cated hash outputs are still uncorrelated to each other and a
resulting false match probability is a product of individual
false match probabilities of the individual truncated hash
outputs.

It is noted that the appending of strings to beginning the
service name string is intended for discussion purposes only,
and that the strings may be appended to the end of the service
name string, inserted into the middle of the service name
string, interleaving the strings with the service name string,
adding the strings to the service name string, multiplying the
strings with the service name string, as well as any possible
combination, permutation, or function involving the strings
and the service name string may be used. Additionally, the
modifying strings themselves are intended for discussion pur-
poses only and that any possible strings that can uniquely
identify the frames may be used as the modifying strings.

Device B 507 may transmit a P2P Probe Request frame
with Hash1(Y) (shown as event 522). It is noted that the P2P
Probe Request frame may include multiple Hash1()s. As an
example, a P2P Probe Request frame may include 3
Hash1()s: Hash1(Y1), Hash2(Y2), and Hash2(Y3), where
Y1,Y2, and Y3 are different services being sought by device
B 507. Device A 505 may perform a check to determine if
Hash1(X)is equalto Hash1(Y), which would indicate that the
truncated hash outputs match and that there is a good prob-
ability (denoted as probability 1) that service_name_adver-
tiser is the same as service_name_seeker (shown as event
524). In general, in order for Hash1(X) to be equal to Hashl
(Y), the hashing functions used to generate the hashes have to
be the same, and the truncation functions have to be the same.
This can be ensured generally by compliance with pre-de-
fined communications protocols and specifications by device
A 505 and device B 507. If Hash1(X) is equal to Hash1(Y),
device A 505 may transmit a P2P Probe Response frame with
Hash2(X) (shown as event 526). Device B 507 may perform
acheck to determine if Hash2(Y) is equal to Hash2(X), which
would indicate that the truncated hash outputs match and that
there is a good probability (denoted as probability 2) that
service_name_advertiser is the same as service_name_seeker
(shown as event 528). If Hash2(Y) is equal to Hash2(X),
device B 507 may transmit a Service Discovery Request
frame with Hash3(Y) (shown as event 530). Device A 505
may perform a check to determine if Hash3(X) is equal to
Hash3(Y), which would indicate that the truncated hash out-
puts match and that there is a good probability (denoted as
probability 3) that service_name_advertiser is the same as
service_name_seeker (shown as event 532). If Hash3(X) is
equal to Hash3(Y), device A 505 may transmit a Service
Discovery Response frame with Hash4(X) (shown as event
534). Device B 507 may perform a check to determine if
Hash4(Y) is equal to Hash4(X), which would indicate that the
truncated hash outputs match and that there is a good prob-
ability (denoted as probability 4) that service_name_adver-
tiser is the same as service_name_seeker (shown as event
536).

In summary, the transmitting device of each of the four
different types of frames as shown in FIG. 5 generates the
truncated hash output of the service name of the transmitting

US 9,154,934 B2

11

device that corresponds to the type of the transmitted frame
and sends it in the corresponding frame. The receiving device
of each frame generates the truncated hash output of the
service name of the receiving device that corresponds to the
type of the received frame, then compares it with the received
truncated hash output. If there is a match, the receiving device
of'the frame may proceed with the next step, e.g., transmitting
the next frame based on the signaling flow of the protocol.
Otherwise, the pre-association discovery procedure may be
terminated immediately or after a negative response is sent to
the peer with a proper result/reason code. As an example, in
event 528 (step 4) as shown in FIG. 5, if Hash2(Y)=Hash2
(X), device B 507 may terminate the discovery procedure
immediately. As another example, in event 532 (step 6) as
shown in FIG. 5, if Hash3(X)=Hash3(Y), device A 505 may
send a Service Discovery Response frame to device B 507
with a negative response and a reason code of “Mismatched
Hash”, without providing the requested service information.
Then device B 507 may terminate the pre-association discov-
ery procedure.

Therefore, in event 536 as shown in FIG. 5, if Hash4(Y) is
equal to Hash4(X), it implies that Hash1(X) is equal to Hash1
(Y), Hash2(Y) is equal to Hash2(X), and Hash3(X) is equal to
Hash3(Y), because otherwise the protocol would not allow
the frame exchange to proceed this far. Thus, in each subse-
quent frame, if the match between the corresponding trun-
cated hash outputs persists, the probability that the two ser-
vice names actually match becomes higher than in the
previous frame. For example, probability 4 is higher than
probability 3, probability 3 is higher than probability 2, and
probability 2 is higher than probability 1. In the end, prob-
ability 4 is so high that device B 507 may consider that X=Y
(service_name_seeker=service_name_advertiser) (shown as
event 538). Device B 507 may process search results (shown
as events 540 and 542), and as a result, it may proceed with the
association process and/or making a connection with device
A 505.

A {false match, if it occurs and remains undetected, may
cause miscommunications between devices. Thus, it is desir-
able to keep the false match probability as low as possible. As
an example, the draft WFDS specification uses the full service
name in the subsequent management frames after the Probe
Request frame to avoid false match while incurring the price
of higher signaling overheads in those frames.

According to an example embodiment, by using different
and yet uncorrelated truncated hash outputs in different
frames, e.g., by using different truncation functions with non-
overlapping bit-patterns or by appending different prefixes to
service name before going through the hashing function, the
false match may occur independently in different frames, ifan
ideal cryptographic hash function, such as the SHA-256, is
used. As a result, the residual false match probability in each
subsequent frame is the product of false match probabilities
of the corresponding truncated hash outputs in the current
frame and in each of all previous frames. Therefore, the
residual false match probability decreases exponentially in
each subsequent frame. As an example, a 6-octet long trun-
cated string for all truncated hash outputs in each of the four
types of frames as shown in FIG. 5 may be used. The prob-
ability of false match after the Probe Request frame (i.e., in
event 524, step 2) is roughly 27> or 5.96x10~%. The probabil -
ity of residual false match after the Probe Response frame
(i.e., in event 528, step 4) is roughly 27*® or 3.55x107"°, The
probability of residual false match after the SD Request frame
(i.e., in event 532, step 6) is roughly 2772 or 2.12x107>%. The
probability of residual false match after the SD Response
frame (i.e., in event 536, step 8)is roughly 27%or 1.26x107%.

5

10

15

20

25

30

35

40

45

55

60

65

12

It is noted that these probabilities may be simply approxi-
mated as above, assuming an ideal cryptographic hash algo-
rithm is used.

Therefore, the signaling overheads are reduced in the
Probe Response and SD Request/Response frames, since
truncated hash outputs with a length of a few octets are used
comparing to full service names which are generally much
longer than a few octets. The signaling protocol remains
relatively robust as a false match event happened in an earlier
frame will likely be detected by the mismatch in a subsequent
frame. The residual false match probability at the end of the
discovery procedure is virtually zero. Furthermore, since
only truncated hash outputs of the service name are used in
the message exchanges during the pre-association state, the
privacy of the service information, device information, or
user information is protected.

FIG. 6q illustrates a flow diagram of first example opera-
tions 600 occurring in a seeker device as the seeker device
performs a pre-association discovery procedure. Operations
600 may be indicative of operations occurring in a seeker
device, such as device B 507, as the seeker device performs a
pre-association discovery procedure.

Operations 600 may begin with the seeker device generat-
ing a plurality of truncated hash outputs of service_name_
seeker of a service Y being sought by the seeker device (block
605). The plurality of truncated hash outputs may comprise
multiple, preferably non-overlapping, truncations of a single
hash output or identical truncations of multiple hash outputs
as functions of service_name seeker and different frame
types. The seeker device may transmit a Probe Request frame
with a first truncated hash output Hash1(Y) (block 607). The
seeker device may receive a Probe Response frame with a
second truncated hash output Hash2(X), where X is a servi-
ce_name_advertiser of service X of an advertiser device
(block 609). The seeker device may perform a check to deter-
mine if Hash2(Y) is equal to Hash2(X) (block 611).

If Hash2(Y) is not equal to Hash2(X), the seeker device
may terminate the pre-association discovery. If Hash2(Y) is
equal to Hash2(X), the seeker device may transmit a Service
Discovery Request frame with a third truncated hash output
Hash3(Y) (block 613). The seeker device may receive a Ser-
vice Discovery Response frame with a fourth truncated hash
output Hash4(X) (block 615). The seeker device may perform
acheck to determine if Hash4(Y) is equal to Hash4(X) (block
617). It Hash4(Y) is not equal to Hash4(X), the seeker device
may terminate the pre-association discovery. If Hash4(Y) is
equal to Hash4(X), the seeker device may determine that
service Y is found and is provided by the advertiser device
(block 619). As a result, the seeker device may further initiate
an association procedure and/or set up a connection with the
advertiser device.

FIG. 65 illustrates a flow diagram of first example opera-
tions 650 occurring in an advertiser device as the advertiser
device performs a pre-association discovery procedure.
Operations 650 may be indicative of operations occurring in
an advertiser device, such as device A 405 or device A 505, as
the advertiser device performs a pre-association procedure.

Operations 650 may begin with the advertiser device gen-
erating a plurality of truncated hash outputs of service_
name_advertiser of a service X being provided by the adver-
tiser device (block 655). The plurality of truncated hash out-
puts may comprise multiple, preferably non-overlapping
truncations of a single hash output or identical truncations of
multiple hash outputs as functions of service_name_adver-
tiser and different frame types. The advertiser device may
receive a Probe Request frame with a first truncated hash
output Hash1(Y), where Y is a service_name_seeker of ser-

US 9,154,934 B2

13

vice Y of a seeker device (block 657). The advertiser device
may perform a check to determine if Hash1(X) is equal to
Hash1(Y) (block 659).

IfHash1(X) is not equal to Hash1(Y), the advertiser device
may terminate the pre-association discovery, e.g., by trans-
mitting a Probe Response frame with a negative response. If
Hash1(X) is equal to Hash1(Y), the advertiser device may
transmit a Probe Response frame with a second truncated
hash output Hash2(X) (block 661). The advertiser device may
receive a Service Discovery Request frame with a third trun-
cated hash output Hash3(Y) (block 663). The advertiser
device may perform a check to determine if Hash3(X) is equal
to Hash3(Y) (block 665). If Hash3(X) is not equal to Hash3
(Y), the advertiser device may terminate the pre-association
discovery, e.g., by transmitting a Service Discovery Response
frame with a negative response. [f Hash3(X) is equal to Hash3
(Y), the advertiser device may transmit a Service Discovery
Response with a fourth truncated hash output Hash4(X)
(block 667). If the advertiser device further receives an asso-
ciation request from the seeker device, it may complete an
association procedure with the seeker device.

FIG. 7 illustrates a first alternative example message
exchange diagram 700 highlighting a pre-association discov-
ery procedure. Message exchange diagram 700 illustrates
messages exchanged between a device A 705 and a device B
707. Device A 705 and device B 707 includes multiple layers,
including application (APP) layers, service layers, and ASP
layers. The details of the layers below the ASP layers, such as
PHY layers and MAC layers, are intentionally omitted.

An application in Device A 705 may request to advertise a
service X provided by the application (shown as event 710).
The request may result in the initiation of an advertisement-
service() procedure with a service_name_advertiser of ser-
vice X (shown as event 712). Device A 705 may generate a
plurality of truncated hash outputs of service_name_adver-
tiser unique to different frame types (shown as event 714). An
application in Device B 707 is secking a service and may
initiate a seekservice() procedure with service_name_seeker
of'aserviceY being sought by device B 707 (shown as events
716 and 718). Device B 707 may generate a plurality of
truncated hash outputs of service_name_seeker unique to
different frame types (shown as event 720).

Device A 705 may periodically broadcasts, in the Beacon
frame, Short Beacon frame, or Fast Initial Link Setup (FILS)
Discovery (FD) frame, HashO(X), which is a truncated hash
output of service_name_advertiser that device A 705 wishes
to advertise (shown as event 722), where HashQ() represents
the function for generating the truncated hash output of an
input, such as a service name, for the Beacon frame, Short
Beacon frame, or FD frame. Device B 707 may perform a
check to determine if HashO(X) is equal to HashO(Y) (block
724). In other words, device B 707 checks to determine if the
truncated hash output, corresponding to the frame type of
Beacon frame, Short Beacon frame, and FD frame, of servi-
ce_name_seeker that device B 707 seeks matches with the
truncated hash output received from the Beacon, Short Bea-
con, or FD frame. In general, in order for HashO(X) to be
equal to HashO(Y), the hashing functions used to generate the
hashes have to be the same, and the truncation functions have
to be the same. This can be ensured generally by compliance
with pre-defined communications protocols and specifica-
tions by device A 705 and device B 707. Device B 707
transmits a Pre-Association Discovery (PAD) Request frame
with the truncated hash output, corresponding to the frame
type of PAD Request frame (i.e., Hash5(Y), where Hash5()
represents the function for generating the truncated hash out-
put of an input, such as a service name, for the PAD Request

5

10

15

20

25

30

35

40

45

50

55

60

65

14

frame), of the service_name_seeker, together with a request
of service information of that service (shown as even 726).

Device A 705 may perform a check to determine if Hash5
(X) is equal to Hash5(Y) (shown as event 728). In other
words, device A 705 determines if the truncated hash output,
corresponding to the frame type of PAD Request frame, of the
service_name_advertiser that device A 705 advertises
matches with the truncated hash output received from the
PAD Request frame. If the two truncated hash outputs match,
device A 705 may transmit a Pre-Association Discovery
(PAD) Response frame with the truncated hash output, cor-
responding to the frame type of PAD Response frame (i.e.,
Hash6(X), where Hash6() represents the function for gener-
ating the truncated hash output of an input, such as a service
name, for PAD Response frame), of the service_name_adver-
tiser that the service advertiser advertises, together with the
requested service information, the service (availability) sta-
tus, and an transaction identifier of that service (shown as
event 730). Device B 707 may perform a check to determine
if Hash6(Y) is equal to Hash6(X) (shown as event 732). In
other words, device B707 may determines if the truncated
hash output, corresponding to the frame type of PAD
Response frame, of the service_name_seeker that device B
707 seeks matches with the truncated hash output received
from the PAD Response frame. If the two truncated hash
outputs match, device B 707 considers service X is equal to
service Y (shown as event 734). If the received service infor-
mation also meets the requirements of the service seeker, the
device B 707 may consider the requested service Y is found
and may further inform the corresponding application. As a
result, for example, device B 707 may initiate subsequent
procedures such as authentication and provisioning negotia-
tion, which eventually leads to a connection being set up
between device A 705 and device B 707.

FIG. 8 illustrates a second alternative example message
exchange diagram 800 highlighting a pre-association discov-
ery procedure. Message exchange diagram 800 illustrates
messages exchanged between a device A 805 and a device B
807. Device A 805 and device B 807 includes multiple layers,
including application layers, service layers, and ASP layers.
The details of the layers below the ASP layers, such as PHY
layers and MAC layers, are intentionally omitted.

An application in Device A 805 may request to advertise a
service X provided by the application (shown as event 810).
The request may result in the initiation of an advertisement-
service() procedure with a service_name_advertiser of ser-
vice X (shown as event 812). Device A 805 may generate a
plurality of truncated hash outputs of service_name_adver-
tiser unique to different frame types (shown as event 814).
Device B 807 is seeking a service and may initiate a seekser-
vice() procedure with service_name_seeker of a service Y
being sought by device B 807 (shown as events 816 and 818).
Device B 807 may generate a plurality of truncated hash
outputs of service_name_seeker unique to different frame
types (shown as event 820).

Device A 805 may or may not periodically broadcasts, in
the Beacon frame, Short Beacon frame, or Fast Initial Link
Setup (FILS) Discovery (FD) frame, HashO(X), which is a
truncated hash output of service_name_advertiser that device
A 805 wishes to advertise (shown as event 822). HashO()
represents the function for generating the truncated hash out-
put of an input, such as a service name, for the Beacon frame,
Short Beacon frame, or FD frame. If device B 807 receives the
Beacon frame, Short Beacon frame, or FD frame, device B
807 may perform a check to determine if HashO(X) is equal to
HashO(Y) (shown as event 824). In general, in order for
HashO(X) to be equal to HashO(Y), the hashing functions

US 9,154,934 B2

15

used to generate the hashes have to be the same, and the
truncation functions have to be the same. This can be ensured
generally by compliance with pre-defined communications
protocols and specifications by device A 805 and device B
807.

It HashO(X) is equal to HashO(Y), device B 807 may trans-
mit a Subscribe frame with Hash7(Y) (shown as event 826).
In addition, in the absence of receiving a Beacon frame, a
Short Beacon frame, or an FD frame, device B 807 may
periodically transmit a Subscribe frame, in a broadcast or
multicast manner, to query devices operating in the surround-
ing area if they have a service that device B 807 seeks (shown
as event 826). The truncated hash output, corresponding to
the frame type of Subscribe frame (i.e., Hash7(Y), where
Hash7() represents the function for generating the truncated
hash output of an input, such as a service name, for the
Subscribe frame), of service_name_seeker is included in the
Subscribe frame. Device A 805 may perform a check to
determine if Hash7(X) is equal to Hash7(Y) (shown as event
828). If a match is found (i.e., Hash7(X) is equal to Hash7
(Y)), device A 805 may transmit a Publish frame with the
service information requested, including a service handle (i.e.
the Advertisement ID) used as a reference to the service
during a subsequent service provisioning procedure (shown
as event 830). A truncated hash output, corresponding to the
frame type of Publish frame (i.e., Hash8(X), where Hash8()
represents the function for generating the truncated hash out-
putofan input, such as a service name, for the Publish frame),
of service_name_advertiser is also included in the Publish
frame. In a neighbor-awareness networking type of applica-
tion, a requirement may be to keep the power consumption at
device A 805 (the advertiser device) and device B 807 (the
seeker device) as low as possible while they periodically
transmit the Publish or Subscribe frames, respectively. Since
Wi-Fi effectively uses a timer division multiple access
(TDMA) scheme, it has been suggested that having a syn-
chronization scheme to keep all Publish and Subscribe frames
close in time can help to keep the power consumption low. In
this sense, it is advantageous to use the truncated hash output
of'the service name, instead of the longer and length-variable
full service name, in the Publish or Subscribe frames, since
the truncated hash output has a shorter and fixed length,
making the frame size of the Publish or Subscribe frame
shorter and, more importantly, more predictable, therefore
making it easier to align the Publish and Subscribe frames
sent by different devices.

Different hash algorithms certainly can be used for gener-
ating different truncated hash outputs for different frames.
However, it may not be easy to find many good cryptographic
hash algorithms. Hash collisions have been found on the
well-known MDS5, SHA-0, and SHA-1 algorithms, leaving
SHA-2 the remaining set of cryptographic hash algorithms
that has been widely used and hasn’t been broken yet. SHA-
256 is a member of the SHA-2 family of hash algorithms and
has been widely used. According to an example embodiment,
a common hash function, such as SHA-256, may be used for
all frame types. This also helps to keep the implementation
simple.

FIG. 9 illustrates a first example unit 900 for generating
different truncated hash output using a common hash func-
tion. As shown in FIG. 9, a hash function unit 905 takes the
Input, which may be a service name or a person’s name, and
generates the hash output for it, then a truncation function unit
910 carves out different portion of the hash output to produce
the truncated hash output based on the type of the frame that
carries the truncated hash output. As an example, the output of
SHA-256 hash function is 256-bit or 32-octet long, of which

40

45

50

16

the first 6 octets can be used for Probe Request frame, the next
6 octets can be used for Probe Response frame, and the 6
octets after that can be used for Service Discovery Request
frame, and so on. In this example, the truncation bit patterns,
i.e., the first 6 octets, the second 6 octets, and the like, for
different types of the frame don’t overlap with each other at
all. Then, given the ideal cryptographic properties of SHA-
256 hash function, the false match events on individual pairs
of truncated hash outputs are totally uncorrelated. Thus, the
residual false match probability, after matches being found on
N pairs of truncated hash outputs, is the product of the false
match probabilities on N individual pairs, thereby decreasing
exponentially. Therefore, when the truncation-based
approach is used to generate different truncated hash outputs
from the same service name, it is preferred that the truncation
bit patterns don’t overlap with each other. It is noted that the
above example is intended for discussion purposes and other
ways for truncating the output of hash function unit 905 may
be possible.

FIG. 10 illustrates a second example unit 1000 for gener-
ating different truncated hash output using a common hash
function. As shown in FIG. 10, first, an input modifier unit
1005 modifies the Input to produce a modified Input based on
the frame type. As an example, a string of “probe.request.”
may be placed as the prefix to the Input string to produce the
modified Input string if the frame type is the Probe Request
frame, and a string of “probe.response.” may be placed as the
prefix to the Input string to produce the modified Input string
if the frame type is the Probe Response frame, and the like. A
hash function unit 1010 may take the modified Input pro-
duced by input modifier unit 1005 and generates the hash
output for it. A truncation function unit 1015 may shorten the
hash output. A single truncation function may be imple-
mented in truncation function unit 1015 to simplify imple-
mentation as the number of frame types increases.

FIG. 11 illustrates a first example Input Modifier unit 1100.
An append unit 1105 appends its two inputs together to pro-
duce its output. Other units, such as interleave, add, multiply,
and the like, may be used in place of append unit 1105.

FIG. 12 illustrates a second example Input Modifier unit
1200, wherein a different numeric value may be added to the
numeric value of the Input arithmetically to produce the
modified Input based on the frame type. A string to binary
converter 1205 may convert a text input to a numerical value
or a sequence of numerical values, which may be added up
with a frame type value by adder 1210.

Then as shown in FIG. 10, Hash Function unit 1010 may
hash the modified Input, from Input Modifier 1100 or 1200, to
produce the hash output. Truncation Function unit 1015
carves out a portion of the hash output to produce the trun-
cated hash output. Truncation Function unit 1015 may be
common for all frame types for simple implementation, or it
may be dependent on the frame type to further optimize the
truncation length for each type of frame based on the tradeoff
between the signaling overhead and residual false match
probability at each frame. Since the Input Modifier block can
be as simple as appending a given prefix to a given Input
string, as illustrated in FIG. 11, even when a new type of
frame is defined later, the new prefix (for the new type of
frame) may be generated by the software and be provided to
the functional blocks for generating the new type of truncated
hash output, without changing the existing implementation of
these functional blocks, which may be implemented in hard-
ware.

FIG. 13 illustrates a flow diagram of second example
operations 1300 occurring in a seeker device as it participates
in a pre-association procedure. Operations 1300 may be

US 9,154,934 B2

17
indicative of operations occurring in a seeker device, such as
device B 707 and device B 807, as the seeker device as it
participates in a pre-association procedure.

Operations 1300 may begin with the seeker device gener-
ating a plurality of truncated hash outputs of service_name_
seeker of a service Y being sought by the seeker device (block
1305). The plurality of truncated hash outputs may comprise
multiple, preferably non-overlapping, truncations of a single
hash output or identical truncations of multiple hash outputs
as functions of service_name_ seeker and different frame
types. The seeker device may receive a Beacon frame, Short
Beacon frame, or FD frame including a truncated hash output
of'service_name_advertiser for service X, denoted Hash0(X)
(block 1307). The seeker device may perform a check to
determine if HashO(X) is equal to HashO(Y) (block 1309). In
other words, the seeker device may perform the check to
determine if the truncated hash output of service_name_ad-
vertiser for service X matches a truncated hash output of
service_name_seeker of sought service Y. If HashO(X) is not
equal to HashO(Y), operations 1300 may terminate.

If HashO(X) is equal to HashO(Y), the seeker device may
transmit a request frame, such as a PAD Request frame or a
Subscribe frame, with Hash1(Y) (block 1311). The seeker
device may receive a response frame, such as a PAD
Response frame or a Publish frame, with Hash2(X) (block
1313). The seeker device may perform a check to determine if
Hash2(X) is equal to Hash2(Y) (block 1315). If Hash2(X) is
not equal to Hash2(Y), operations 1300 may terminate. If
Hash2(X) is equal to Hash2(Y), the seeker device may deter-
mine that service Y is found and is provided by the advertiser
device (block 1317). And as a result, the seeker device may
complete a connection procedure with the advertiser device.

FIG. 14 illustrates a flow diagram of second example
operations 1400 occurring in an advertiser device as it par-
ticipates in a pre-association procedure. Operations 1400
may be indicative of operations occurring in an advertiser
device, such as device A 705 and device A 805, as the adver-
tiser device as it participates in a pre-association procedure.

Operations 1400 may begin with the advertiser device gen-
erating a plurality of truncated hash outputs of service_
name_advertiser of a service X being advertised by the adver-
tiser device (block 1405). The plurality of truncated hash
outputs may comprise multiple, preferably non-overlapping,
truncations of a single hash output or identical truncations of
multiple hash outputs as functions of service_ name_adver-
tiser and different frame types. The advertiser device may
broadcast a Beacon frame, Short Beacon frame, or FD frame
including a truncated hash output of service_ name_adver-
tiser for service X, denoted HashO(X) (block 1407).

The advertiser device may receive a request, such as a PAD
Request frame or a Subscribe frame, with Hash1(Y) (block
1409). The advertiser device may perform a check to deter-
mine if Hash1(Y) is equal to Hash1(X) (block 1411). If Hash1
(Y) is not equal to Hash1(X), the advertiser device may trans-
mit a Response frame with a negative response, then
operations 1400 may terminate. If Hash1(Y) is equal to
Hash1(X), the advertiser device may transmit a Response
frame, such as a PAD Response frame or a Publish frame,
with Hash2(X) and the service information that is being
requested (block 1413).

In general, different types of frames may be sent at difter-
ent stages during the pre-associate discovery procedure to
achieve different purposes. However, it is also possible that
one type of frame is sent at different stages during the pre-
associate discovery procedure to achieve different purposes.
As an example, the same type of frame, such as a public action
frame, may be sent for a different purpose when it contains a
different type of information element, field, or attribute.

20

30

40

45

50

18

Therefore, although the illustrations and descriptions pro-
vided so far highlight the embodiments that different trun-
cated hash outputs are generated for different types of frames
that carry the truncated hash outputs, it should be considered
these are intended as illustrative examples. It is entirely
within the spirit of the present embodiments that a single type
of frame may be sent at different stages during the pre-asso-
ciation discovery procedure to achieve different purposes by
carrying different types of information elements, fields, and/
or attributes. Thus a different truncated hash output may be
generated for each different purpose of the frame, and the
purpose of the frame may be determined by the type of an
information element, field, or attribute contained in the frame.
As an example, in the example illustrated in FIG. 7 and
described before, the PAD Request frame and PAD Response
frame may be replaced by a public action frame. When the
public action frame contains a PAD Request element, it is sent
for the purpose of sending a PAD request and a first truncated
hash output is used. When the public action frame contains a
PAD Response element, it is sent for the purpose of sending a
PAD response and a second truncated hash output is used.
Generally, the type of an element may be indicated by an
identifier in the header portion of the element. As another
example, in the example illustrated in FIG. 8 and described
before, the Subscribe frame and the Publish frame may be
replaced by a public action frame. When the public action
frame contains a Subscribe attribute or an attribute that indi-
cates Subscribe function, the public action frame is send for
the purpose of subscribing a service and a first truncated hash
output is used. When the public action frame contains a Pub-
lish attribute or an attribute that indicates Publish function,
the public action frame is send for the purpose of publishing
a service and a second truncated hash output is used. Gener-
ally, the type of an attribute may be indicated by an identifier
in the header portion of the attribute. However, it is entirely
possible that the function of an attribute may be indicated by
additional control fields.

FIG. 15 illustrates an example communications device
1500. Communications device 1500 may be an implementa-
tion of a seeker device, an advertiser device, and the like.
Communications device 1500 may be used to implement
various embodiments discussed herein. As shown in FIG. 15,
a transmitter 1505 is configured to transmit packets, frames,
and the like. Communications device 1500 also includes a
receiver 1510 that is configured to receive packets, frames,
and the like.

A hashing unit 1520 is configured to generate a hash output
for an input using a hashing function, such as SHA-256. A
truncating unit 1522 is configured to truncate a hash output
provided by hashing unit 1520. Truncating unit 1522 is con-
figured to truncate the hash output by a specified amount. A
modifying unit 1524 is configured to modify a first input with
a second input. Modifying unit 1524 may append, interleave,
add, subtract, apply a function, and the like, to the first input
and/or the second input. A comparing unit 1526 is configured
to compare two inputs, such as truncated hash values and
determine if they match (or are equal). A memory 1530 is
configured to store frames, service names, strings, hash func-
tions, hash outputs, truncated hash outputs, and the like.

The elements of communications device 1500 may be
implemented as specific hardware logic blocks. In an alter-
native, the elements of communications device 1500 may be
implemented as software executing in a processor, controller,
application specific integrated circuit, or so on. In yet another

US 9,154,934 B2

19

alternative, the elements of communications device 1500
may be implemented as a combination of software and/or
hardware.

As an example, receiver 1510 and transmitter 1505 may be
implemented as a specific hardware block, while hashing unit
1520, truncating unit 1522, modifying unit 1524, and com-
paring unit 1526 may be software modules executing in a
microprocessor (such as processor 1515) or a custom circuit
or a custom compiled logic array of a field programmable
logic array. Hashing unit 1520, truncating unit 1522, modi-
fying unit 1524, and comparing unit 1526 may be modules
stored in memory 1530.

Although the present disclosure and its advantages have
been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the disclosure
as defined by the appended claims.

What is claimed is:

1. A method for operating a seeker device, the method
comprising:

generating, by the seeker device, a first seeker truncated

hash output from a sought service name;

generating, by the seeker device, a second seeker truncated

hash output from the sought service name, wherein the
first seeker truncated hash output and the second seeker
truncated hash output are uncorrelated;
transmitting, by the seeker device, a first request message
including the first seeker truncated hash output;

receiving, by the seeker device, a first response message
from an advertiser device, the first response message
including a second advertiser truncated hash output gen-
erated from an advertised service name, wherein the first
seeker truncated hash output matches a first advertiser
truncated hash output generated from the advertised ser-
vice name; and

determining, by the seeker device, that the advertised ser-

vice name matches the sought service name in response
to determining that the second advertiser truncated hash
output matches the second seeker truncated hash output.

2. The method of claim 1, the method further comprising
initiating, by the seeker device, an association procedure with
the advertiser device in response to determining that the
advertised service name matches the sought service name.

3. The method of claim 1, wherein generating the first
seeker truncated hash output comprises truncating a first part
of'a hash output of a hashing function with the sought service
name as input, and generating the second seeker truncated
hash output comprises truncating a second part of the hash
output of the hashing function with the sought service name
as input.

4. The method of claim 3, wherein the first part of the hash
output and the second part of the hash output are not overlap-
ping with each other.

5. The method of claim 1, wherein generating the first
seeker truncated hash output comprises:

modifying the sought service name with a first moditying

function to produce a first modified sought service
name;

generating a first hash output with a hashing function and

the first modified sought service name; and

truncating the first hash output.

6. The method of claim 1, wherein generating the second
seeker truncated hash output comprises:

modifying the sought service name with a second modify-

ing function to produce a second modified sought ser-
vice name;

5

10

15

20

25

30

35

40

45

50

55

60

20

generating a second hash output with the hashing function
and the second modified sought service name; and
truncating the second hash output.

7. The method of claim 1, wherein the first request message
is a Probe Request frame and the first response message is a
Probe Response frame.

8. The method of claim 7, further comprising:

generating a third seeker truncated hash output from the

sought service name;

generating a fourth seeker truncated hash output from the

sought service name;

transmitting a second request message including the third

seeker truncated hash output in response to determining
that the advertised service name matches the sought
service name; and

receiving a second response message from the advertiser

device, the second response message including a fourth
advertiser truncated hash output generated from the
advertised service name, wherein the third seeker trun-
cated hash output matches a third advertiser truncated
hash output generated from the advertised service name.
9. The method of claim 8, wherein the second request
message is a Service Discovery Request frame and the second
response message is a Service Discovery Response frame.
10. The method of claim 1, wherein the first request mes-
sage is a Public Action frame carrying a Pre-Association
Discovery Request element and the first response message is
a Public Action frame carrying a Pre-Association Discovery
Response element.
11. The method of claim 1, wherein the first request mes-
sage is a Public Action frame carrying an attribute indicating
aSubscribe function and the first response message is a Public
Action frame carrying an attribute indicating a Publish func-
tion.
12. A method for operating an advertiser device, the
method comprising:
generating, by the advertiser device, a first advertiser trun-
cated hash output from an advertised service name;

generating, by the advertiser device, a second advertiser
truncated hash output from the advertised service name,
wherein the first advertiser truncated hash output and the
second advertiser truncated hash output are uncorre-
lated;

receiving, by the advertiser device, a first request message

from a seeker device, the first request message including
a first seeker truncated hash output generated from a
sought service name; and

transmitting, by the advertiser device, a first response mes-

sage including the second advertiser truncated hash out-
put in response to determining that the first seeker trun-
cated hash output matches the first advertiser truncated
hash output.

13. The method of claim 12, wherein generating the first
advertiser truncated hash output comprises truncating a first
part of a hash output of a hashing function with the advertised
service name as input, and generating the second advertiser
truncated hash output comprises truncating a second part of
the hash output of the hashing function with the advertised
service name as input.

14. The method of claim 13, wherein the first part of the
hash output and the second part of the hash output are not
overlapping with each other.

15. The method of claim 12, wherein generating the first
advertiser truncated hash output comprises:

modifying the advertised service name with a first modi-

fying function to produce a first modified advertised
service name;

US 9,154,934 B2

21

generating a first hash output with a hashing function and
the first modified advertised service name; and

truncating the first hash output.

16. The method of claim 12, wherein generating the second

advertiser truncated hash output comprises:

modifying the advertised service name with a second
modifying function to produce a second modified adver-
tised service name;

generating a second hash output with the hashing function
and the second modified advertised service name; and

truncating the second hash output.

17. The method of claim 12, wherein the first request
message is a Probe Request frame and the first response
message is a Probe Response frame.

18. The method of claim 17, further comprising:

generating a third advertiser truncated hash output from the
advertised service name;

generating a fourth advertiser truncated hash output from
the advertised service name;

receiving a second request message from the secker device,
the second request message including a third seeker
truncated hash output generated from the sought service
name; and

transmitting a second response message including the
fourth advertiser truncated hash output in response to
determining that the third seeker truncated hash output
matches the third advertiser truncated hash output.

19. The method of claim 18, wherein the second request
message is a Service Discovery Request frame and the second
response message is a Service Discovery Response frame.

20. The method of claim 12, wherein the first request
message is a Public Action frame carrying a Pre-Association
Discovery Request element and the first response message is
a Public Action frame carrying a Pre-Association Discovery
Response element.

21. The method of claim 12, wherein the first request
message is a Public Action frame carrying an attribute indi-
cating a Subscribe function and the first response message is
a Public Action frame carrying an attribute indicating a Pub-
lish function.

22. A seeker device comprising:

a processor configured to generate a first seeker truncated
hash output from a sought service name, to generate a
second seeker truncated hash output from the sought
service name, wherein the first seeker truncated hash
output and the second secker truncated hash output are
uncorrelated, and to determine that an advertised service
name from an advertiser device matches the sought ser-
vice name in response to determining that a second
advertiser truncated hash output received from the
advertiser device matches the second seeker truncated
hash output;

a transmitter operatively coupled to the processor, the
transmitter configured to transmit a first request message
including the first seeker truncated hash output; and

areceiver operatively coupled to the processor, the receiver
configured to receive a first response message from the
advertiser device, the first response message including
the second advertiser truncated hash output generated
from the advertised service name, wherein the first
seeker truncated hash output matches a first advertiser
truncated hash output generated from the advertised ser-
vice name.

23. The seeker device of claim 22, wherein the processor is
configured to truncate a first part of a hash output of a hashing
function with the sought service name as input to produce the
first seeker truncated hash output, and to truncate a second

10

15

20

25

30

35

40

45

50

55

60

65

22

part of the hash output of the hashing function with the sought
service name as input to produce the second seeker truncated
hash output.

24. The seeker device of claim 22, wherein the processor is
configured to modify the sought service name with a first
modifying function to produce a first modified sought service
name, to generate a first hash output with a hashing function
and the first modified sought service name, and to truncate the
first hash output to produce the first seeker truncated hash
output.

25. The seeker device of claim 22, wherein the processor is
configured to modify the sought service name with a second
modifying function to produce a second modified sought
service name, to generate a second hash output with the
hashing function and the second modified sought service
name, to truncate the second hash output to produce the
second seeker truncated hash output.

26. The seeker device of claim 22, wherein the processor is
configured to generate a third seeker truncated hash output
from the sought service name, and to generate a fourth seeker
truncated hash output from the sought service name, wherein
the transmitter is configured to transmit a second request
message including the third seeker truncated hash output in
response to determining that the advertised service name
matches the sought service name, and wherein the receiver is
configured to receive a second response message from the
advertiser device, the second response message including a
fourth advertiser truncated hash output generated from the
advertised service name, wherein the third seeker truncated
hash output matches a third advertiser truncated hash output
generated from the advertised service name.

27. An advertiser device comprising:

a processor configured to generate a first advertiser trun-
cated hash output from an advertised service name, and
to generate a second advertiser truncated hash output
from the advertised service name, wherein the first
advertiser truncated hash output and the second adver-
tiser truncated hash output are uncorrelated;

areceiver operatively coupled to the processor, the receiver
configured to receive a first request message from a
seeker device, the first request message including a first
seeker truncated hash output; and

a transmitter operatively coupled to the processor, the
transmitter configured to transmit a first response mes-
sage including the second advertiser truncated hash out-
put in response to determining that the first seeker trun-
cated hash output matches the first advertiser truncated
hash output.

28. The advertiser device of claim 27, wherein the proces-
sor is configured to truncate a first part of a hash output of a
hashing function with the advertised service name as input to
produce the first advertiser truncated hash output, and to
truncate a second part of the hash output of the hashing
function with the advertised service name as input to produce
the second advertiser truncated hash output.

29. The advertiser device of claim 27, wherein the proces-
sor is configured to modify the advertised service name with
a first modifying function to produce a first modified adver-
tised service name, to generate a first hash output with a
hashing function and the first modified advertised service
name, and to truncate the first hash output to produce the first
advertiser truncated hash output.

30. The advertiser device of claim 27, wherein the proces-
sor is configured to modify the advertised service name with
a second modifying function to produce a second modified
advertised service name, to generate a second hash output
with the hashing function and the second modified advertised

US 9,154,934 B2

23

service name, and to truncate the second hash output to pro-
duce the second advertiser truncated hash output.

31. The advertiser device of claim 27, wherein the proces-
sor is configured to generate a third advertiser truncated hash
output from the advertised service name, and to generate a
fourth advertiser truncated hash output from the advertised
service name, wherein the receiver is configured to receive a
second request message from the seeker device, the second
request message including a third seeker truncated hash out-
put, and wherein the transmitter is configured to transmit a
second response message including the fourth advertiser
truncated hash output in response to determining that the third
seeker truncated hash output matches the third advertiser
truncated hash output.

#* #* #* #* #*

10

15

24

